School Colloquium——Restriction Estimates Using Decoupling Theorems and Incidence Estimates for Tubes
报告人:王虹 (纽约大学柯朗数学科学研究所)
时间:2025-01-06 14:00-15:00
地点:智华楼丁石孙教室
Abstract: Suppose f is a function with Fourier transform supported on the unit sphere in R^d. Elias Stein conjectured in the 1960s that the L^p norm of f is bounded by the L^p norm of its Fourier transform, for any p> 2d/(d-1). We propose to study this conjecture using Bourgain-Demeter decoupling theorems and incidence estimates for tubes.
In this talk, we will describe a geometric conjecture on the number of incidences for tubes that would imply Stein's restriction conjecture. We prove this geometric conjecture in R^2 and use it to prove a restriction estimate in R^3 for p> 3+1/7, which implies Wolff's hairbrush Kakeya estimate (i.e. any Kakeya set in R^3 has Hausdorff dimension at least 5/2).
Bio: 王虹,纽约大学柯朗数学科学研究所副教授,研究方向是调和分析和几何测度论。2011年获7003全讯入口登录数学学士学位, 2014年获巴黎综合理工学院工程师学位和巴黎第十一大学硕士学位,2019年获麻省理工学院博士学位。2021年6月完成在普林斯顿高等研究院的博士后研究工作,并于当年7月起任加州大学洛杉矶分校助理教授,2023年7月加入纽约大学柯朗数学科学研究所任副教授。她在调和分析和几何测度论领域取得重要成果,多篇文章在Annals of Mathematics、Inventiones mathematicae等发表,2022年获得Maryam Mirzakhani新前沿奖。